

Lesson Master

Questions on SPUR Objectives See pages 288–291 for objectives.

PROPERTIES Objective E

In 1 and 2, an equation for a function is given. a. State the period of the function, b. State the amplitude of the function.

- 1. $3y = \sin\left(\frac{x}{2}\right)$
- a.

b. _

- $2. \ \frac{y}{8} = \frac{\sin x}{6}$
- а. _

b. _____

- 3. $y = 5 \cos(3\pi x)$
- a.

- b. _____
- 4. Consider the image of the graph of $y = \cos x$ under the transformation $S(x, y) = \left(5x, \frac{y}{4}\right)$.
 - a. Find the amplitude of the image.
 - b. Find the period of the image.
 - c. Find an equation for the image.

USES) Objective F

- 5. Suppose a tuning fork vibrates with a frequency of approximately 370 cycles per second. If the vibration displaces air molecules by a maximum of 0.22 mm, give a possible equation for the sound wave that is produced.
- 6. A certain sound wave has equation $y = 17 \cos(120\pi t)$. Write an equation of a sound wave with pitch one octave lower and three times as loud as this one.

REPRESENTATIONS

Objective J

In 7 and 8, sketch one cycle of the graph without a graphing utility.

$$7. \quad y = \frac{\cos\left(\frac{2x}{3}\right)}{4}$$

4-8

Lesson Waster

Questions on SPUR Objectives

See Student Edition pages 288-291 for objectives.

PROPERTIES Objective E

- 1. Consider the function $f(x) = \cos\left(x \frac{7\pi}{3}\right) 2$. Find each of the following for f.
 - a. the phase shift from the cosine function
 - b. the period _____
 - c. the amplitude
 - d. the maximum and minimum values

USES) Objective F

- 2. For an electrical-power supply, the output potential (in volts) and the current (in amps) as a function of time (in seconds) are given by $V=30\cos t+20$ and $I=0.25\cos\left(t-\frac{5\pi}{4}\right)$.
 - a. What are the maximum and minimum output voltages?
 - b. What are the maximum and minimum outputs of the currents?
 - c. What is the phase shift between output current and output voltage?
 - d. By how many seconds does the maximum current lag behind the maximum voltage?

REPRESENTATIONS

Objective J

In 4 and 5, sketch a graph of the function.

3.
$$f(x) = \sin(2x + \frac{\pi}{3}) + 1$$

4.
$$y - 3 = \tan(x - \frac{\pi}{4})$$

