1. What are the two conditions to be able to use l'Hospital's Rule?
2. Compound Interest Problem : You recall from algebra that if money is left in a savings account earning interest compounded continuously at an annual percentage rate (APR) of 6%, then the amount of money, M , after tyears is given by $M=M_{0}(1.06)^{t}$
a) Suppose that an investment of $\mathrm{M}_{0}=\$ 1000$ is made at time $\mathrm{t}=0 \mathrm{yr}$. Find $M^{\prime}(t)$.
b) Find the instantaneous rate of change of the amount of money at $t=0$, at $t=10$, and at $\mathrm{t}=100 \mathrm{yr}$. [$\left.M^{\prime}(0), M^{\prime}(10), M^{\prime}(100)\right]$ What are the units of these rates?
c) Find the amount of money in the account at the times in part b.
[$M(0), M(10), M(100)]$ Does the rate of increase seem to be getting larger as the amount increases?
3. Find the limits using any non-graphical method. If using l'Hospital's rule, show that both conditions have been met.
a. $\lim _{x \rightarrow \infty} \frac{5 x^{2}-11 x+7}{4+3 x-2 x^{2}}$
b. $\lim _{x \rightarrow \infty} \frac{7 x^{2}-4}{3-4 x^{4}}$
c. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$
4. Write the definition of $\ln x$ as a definite integral.
5. Integrate the following:
a. $\quad \int 5^{x} d x$
b. $\int e^{3 x} d x$
c. $\int x e^{x^{2}} d x$
d. $\int \frac{(\ln x)^{5}}{x} d x$
e. $\int_{1}^{7} \frac{1}{p} d p$
f. $\int \tan 3 x d x$

CALCULUS FINAL EXAM REVIEW CHAPTER 6

6. Find the derivative of the following. Use log properties to assist you where possible:
a. $f(x)=\log _{10}(\tan x)$
b. $y=e^{5 x}$
c. $f(x)=10^{\sin x}$
d. $f(x)=x^{3} \ln x$
e. $y=5 e^{\ln x^{3}}$
f. $y=\ln \left(\sin ^{5} x\right)$
g. $y=x^{x}$
h. $y=e^{5 \ln x}$
i. $y=\ln (\csc x)$
7. Use logarithmic differentiation:
a. $y=(5 x-7)^{3}(3 x+1)^{5}$
b. $y=\frac{\left(x^{2}-3\right)^{3}}{\left(4 x^{5}+5 x\right)^{7}}$
c. $y=x^{\ln x}$
d. $y=(3 x-4)^{\cos x}$
