CALCULUS FINAL EXAM REVIEW CHAPTER 6

1. What are the two conditions to be able to use l'Hospital's Rule?

2. <u>Compound Interest Problem</u>: You recall from algebra that if money is left in a savings account earning interest compounded continuously at an annual percentage rate (APR) of 6%, then the amount of money, M, after t years is given by $M = M_0(1.06)^t$ a) Suppose that an investment of $M_0 = \$1000$ is made at time t = 0 yr. Find M'(t).

b) Find the instantaneous rate of change of the amount of money at t = 0, at t = 10, and at t = 100 yr. [M'(0), M'(10), M'(100)] What are the units of these rates?

c) Find the amount of money in the account at the times in part b. [M(0), M(10), M(100)] Does the rate of increase seem to be getting larger as the amount increases?

3. Find the limits using any <u>non-graphical</u> method. If using l'Hospital's rule, show that both conditions have been met.

a.
$$\lim_{x \to \infty} \frac{5x^2 - 11x + 7}{4 + 3x - 2x^2}$$
 b. $\lim_{x \to \infty} \frac{7x^2 - 4}{3 - 4x^4}$ c. $\lim_{x \to 0} \frac{1 - \cos x}{x}$

4. Write the definition of $\ln x$ as a definite integral.

5. Integrate the following:

- a. $\int 5^x dx$ b. $\int e^{3x} dx$ c. $\int x e^{x^2} dx$
- d. $\int \frac{(\ln x)^5}{x} dx$ e. $\int_1^7 \frac{1}{p} dp$ f. $\int \tan 3x dx$

CALCULUS FINAL EXAM REVIEW CHAPTER 6

6. Find the derivative of the following. Use log properties to assist you where possible:

a.
$$f(x) = \log_{10}(\tan x)$$
 b. $y = e^{5x}$ c. $f(x) = 10^{\sin x}$

d.
$$f(x) = x^3 \ln x$$
 e. $y = 5e^{\ln x^3}$ f. $y = \ln(\sin^5 x)$

g.
$$y = x^{x}$$
 h. $y = e^{5\ln x}$ i. $y = \ln(\csc x)$

7. Use logarithmic differentiation:

a.
$$y = (5x-7)^3(3x+1)^5$$

b. $y = \frac{(x^2-3)^3}{(4x^5+5x)^7}$

c. $y = x^{\ln x}$ **d.** $y = (3x - 4)^{\cos x}$