

C3. a.
$$f(x) = \frac{4x^2 - 19x + 21}{x - 3} = \frac{(4x - 7)(x - 3)}{x - 3} = 4x - 7, x \ne 3$$

When $x = 3, 4x - 7 = 4 \cdot 3 - 7 = 5$.

b

c.
$$5.8 = 4(3 + \delta) - 7$$
 $4.2 = 4(3 - \delta) - 7$
 $5.8 = 12 + 4\delta - 7$ $4.2 = 12 - 4\delta - 7$
 $4\delta = 0.8$ $-4\delta = -0.8$
 $\delta = 0.2$ $\delta = 0.2$

d.
$$4(3 + \delta) - 7 = 5 + \varepsilon$$

 $12 + 4\delta - 7 = 5 + \varepsilon$
 $4\delta = \varepsilon$
 $\delta = \frac{1}{4}\varepsilon$

There is a positive value of δ , namely $\frac{1}{4}\varepsilon$, for each positive value of ε , no matter how small ε is.

e. L = 5, c = 3. "... but not equal to 3" is needed so that you can cancel the (x - 3) factors without dividing by zero.

Chapter Test

- T1. Limit, derivative, definite integral, indefinite integral
- T2. See the text for the definition of *limit*.
- T3. Physical meaning: instantaneous rate

T4.

T5. Concept: definite integral
By counting squares, distance ≈ 466.
(Exact answer is 466.3496....)

T6.

$$T_7 = 5(2.5 + 5 + 5 + 10 + 20 + 25 + 20 + 5) = 462.5$$

Trapezoidal rule probably underestimates the integral, but some trapezoids are inscribed and some circumscribed.

T7. Concept: derivative

Slope ≈ -1.8 (ft/s)/s (Exact answer is -1.8137...) Name: acceleration

- T8. The roller coaster is at the bottom of the hill at 25 s because that's where it is going the fastest. The graph is horizontal between 0 and 10 seconds because the velocity stays constant, 5 ft/s, as the roller coaster climbs the ramp.
- T9. Distance = (rate)(time) = 5(10) = 50 ft
- T10. $T_5 = 412.5$; $T_{50} = 416.3118...$; $T_{100} = 416.340219...$
- T11. The differences between the trapezoidal sum and the exact sum are:

 For T_5 : difference = 3.8496...

 For T_{50} : difference = 0.03779...

For T_{100} : difference = 0.009447... The differences are getting smaller, so T_n is getting closer to 416.349667....

- T12. From 30 to 31: average rate = $\frac{y(31) - y(30)}{1} = -1.9098...$ From 30 to 30.1: average rate = $\frac{y(30.1) - y(30)}{0.1} = -1.8246...$ From 30 to 30.01: average rate = $\frac{y(30.01) - y(30)}{0.01} = -1.8148...$
 - T13. The rates are negative because the roller coaster is slowing down.
 - T14. The differences between the average rates and instantaneous rate are:

 For 30 to 31: difference = 0.096030...

 For 30 to 31.1: difference = 0.010833...

 For 30 to 30.01: difference = 0.001095...

The differences are getting smaller, so the average rates are getting closer to the instantaneous rate.

T15. Solve
$$\frac{y(x) - y(30)}{x - 30} = -1.81379936 + 1$$
, getting $x = 30.092220...$ So keep x within 0.092... unit of 30, on the positive side.

T16. Concept: derivative

$$717. \quad f'(4) \approx \frac{f(4.3) - f(3.7)}{4.3 - 3.7} = \frac{35 - 29}{0.6} = 10$$

T18. Answers will vary.

$$\frac{31-29}{3} = 6.6$$

$$\frac{35-31}{3} = 13.3$$