- c. If $y = x^n$, then $y' = nx^{n-1}$.
- d. See solution to Problem 35 in Problem Set 3-4.
- e. See the proof in Section 3-4.
- f. $\frac{dy}{dx}$ is pronounced "d y, d x."
 - $\frac{d}{dx}(y)$ is pronounced "d, dx, of y."

Both mean the derivative of y with respect to x.

g. i.
$$f(x) = 7x^{9/5} \Rightarrow f'(x) = \frac{63}{5}x^{4/5}$$

ii.
$$g(x) = 7x^{-4} - \frac{x^2}{6} - x + 7 \Rightarrow$$

$$g'(x) = -28x^{-5} - \frac{x}{3} - 1$$

iii.
$$h(x) = 7^3 \Rightarrow h'(x) = 0$$

h. $f'(32) = \frac{63}{5}(32)^{4/5} = 201.6$ exactly. The numerical derivative is equal to or very close to 201.6.

R5. a
$$v = \frac{dx}{dt}$$
 or $x'(t)$.

$$a = \frac{dv}{dt}$$
 or $v'(t)$, $a = \frac{d^2x}{dt^2}$ or $x''(t)$

b. $\frac{d^2y}{dx^2}$ means the second derivative of y with respect to x.

$$y = 10x^4 \Rightarrow y' = 40x^3 \Rightarrow y'' \neq 120x^2$$

- c. $f'(x) = 12x^3 \Rightarrow f(x) = 3x^4 + C$. f(x) is the antiderivative, or the indefinite integral, of f(x).
- d. The slope of y = f(x) is determined by the value of f'(x). So the slope of y = f(x) at x = 1 is f'(1) = -1, at x = 5 is f'(5) = 3, and at x = -1 is f'(-1) = 0.

e. i.
$$y = -0.01t^3 + 0.9t^2 - 25t + 250$$

$$v = \frac{dy}{dt} = -0.03t^2 + 1.8t - 25$$

$$a = \frac{dv}{dt} = -0.06t + 1.8$$

(ii)
$$a(15) = -0.06(15) + 1.8 = 0.9 \text{ (km/s)/s}$$

 $v(15) = -0.03(15^2) + 1.8(15) - 25$
 $= -4.75 \text{ km/s}$

The spaceship is slowing down at t = 15 because the velocity and the acceleration have opposite signs.

iii.
$$v = -0.03t^2 + 1.8t - 25 = 0$$

By using the quadratic formula or the solver feature of your grapher, $t = 21.835...$ or $t = 38.164...$

The spaceship is stopped at about 21.8 and 38.2 seconds.

iv.
$$y = -0.01t^3 + 0.9t^2 - 25t + 250 = 0$$

By using TRACE or the solver feature of your grapher, $t = 50$.
 $v(50) = -10$

Because the spaceship is moving at 10 km/s when it reaches the surface, it is a crash landing!

R6. a.

b. The graph of the derivative is the same as the sine graph but inverted in the y-direction.
 Thus, (cos x)' = -sin x is confirmed.

c.
$$-\sin 1 = -0.841470984...$$

Numerical derivative $\approx -0.841470984...$
The two are very close!

d. Composite function

$$f'(x) = -2x \sin(x^2)$$

R7. a. i.
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

ii.
$$f(x) = g(h(x)) \Rightarrow f'(x) = g'(h(x)) \cdot h'(x)$$

- iii. The derivative of a composite function is the derivative of the outside function with respect to the inside function times the derivative of the inside function with respect to x.
- b. See the derivation in the text. This derivation constitutes a proof. Δu must be nonzero throughout the interval.

đ.

 $y_1 = e^x$ is the inverse of $y_2 = \ln x$, so y_1 is a reflection of y_2 across the line y = x.

Concept Problems

C1. a.
$$f(x) = x^7$$
, $g(x) = x^9$. So $h(x) = f(x) \cdot g(x) = x^{16}$.

b.
$$h'(x) = 16x^{15}$$

c.
$$f'(x) = 7x^6$$
, $g'(x) = 9x^8$. So $f'(x) \cdot g'(x) = 63x^{14} \neq h'(x)$.

d.
$$h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) = 7x^6 \cdot x^9 + x^7 \cdot 9x^8 = 16x^{15}$$

C2. a.
$$f(x) = \frac{x - \sin 2x}{\sin x}$$
. $f(0)$ has the form 0/0,

which is indeterminate. f is discontinuous at x = 0 because f(0) does not exist.

b. By graph (below) or by TABLE, f(x) seems to approach -1 as x approaches zero. Define f(0) to be -1.

c. Conjecture: The function is differentiable at x = 0. The derivative should equal zero because the graph is horizontal at x = 0.

d.
$$f'(0) = \lim_{h \to 0} \frac{f(x) - f(0)}{x - 0}$$

$$= \lim_{x \to 0} \frac{\frac{x - \sin 2x}{\sin x} - (-1)}{x}$$

$$= \lim_{x \to 0} \frac{x - \sin 2x + \sin x}{x \sin x}$$

Using TABLE for numerator, denominator, and quotient shows that the numerator goes to zero faster than the denominator. For instance, if x = 0.001,

quotient =
$$\frac{1.1666...\times10^{-9}}{9.999...\times10^{-7}} = 0.00116...$$

Thus, the limit appears to be zero. (The limit can be found algebraically to equal zero by 1'Hospital's rule after students have studied Section 6-5.)

Chapter Test

T1. See the definition of derivative in Section 3-2 or 3-4.

T2. Prove that if
$$f(x) = 3x^4$$
, then $f'(x) = 12x^3$.

Proof.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{3(x+h)^4 - 3x^4}{h}$$

$$= \lim_{h \to 0} \frac{3x^4 + 12x^3h + 18x^2h^2 + 12xh^3 + 3h^4 - 3x^4}{h}$$

$$= \lim_{h \to 0} (12x^3 + 18x^2h + 12xh^2 + 3h^3) = 12x^3,$$
Q.E.D.

T3. If you zoom in on the point where x = 5, the graph appears to get closer and closer to the tangent line. The name of this property is *local linearity*.

T4. Amos substituted *before* differentiating instead of *after*. Correct solution is $f(x) = 7x \Rightarrow f'(x) = 7 \Rightarrow f'(5) = 7$.

T5.
$$f(x) = (7x + 3)^{15} \Rightarrow f'(x) = 105(7x + 3)^{14}$$

T6.
$$g(x) = \cos(x^5) \Rightarrow g'(x) = -5x^4 \sin x^5$$

T7.
$$\frac{d}{dx}[\ln(\sin x)] = \frac{1}{\sin x} \cdot \cos x = \cot x$$

T8.
$$y = 3^{6x} \Rightarrow y' = (\ln 3)3^{6x}(6) = 6(\ln 3)3^{6x}$$

T9.
$$f(x) = \cos(\sin^5 7x) \Rightarrow$$

 $f'(x) = -\sin(\sin^5 7x) \cdot 5 \sin^4 7x \cdot \cos 7x \cdot 7$
 $= -35 \sin(\sin^5 7x) \sin^4 7x \cos 7x$

T10.
$$y = 60x^{2/3} - x + 2^5 \Rightarrow y' = 40x^{-1/3} - 1$$

T11.
$$y = e^{9x} \Rightarrow \frac{dy}{dx} = 9e^{9x} \Rightarrow \frac{d^2y}{dx^2} = 81e^{9x}$$

T12. $y' \approx 0.6$ (Function is $y = -3 + 1.5^x$, for which the numerical derivative is 0.6081...)

T13.
$$y = 3 + 5x^{-1.6}$$

 $v(x) = 5(-1.6)x^{-2.6} = -8x^{-2.6}$
 $a(x) = -8(-2.6)x^{-3.6} = 20.8x^{-3.6}$

Acceleration is the second derivative of the displacement function.

T14.
$$f'(x) = 72x^{5/4} \Rightarrow f(x) = 32x^{9/4}$$

T15.
$$f'(x) = 5 \sin x$$
 and $f(0) = 13$
 $f(x) = -5 \cos x + C$
 $13 = -5 \cos 0 + C \Rightarrow C = 18$
 $f(x) = -5 \cos x + 18$

T16.
$$f(x) = \cos 3x \Rightarrow f'(x) = -3 \sin 3x$$

 $f'(5) = -3 \sin 15 = -1.95086...$
Decreasing at 1.95... y-units per x-unit.

T17.
$$f(x) = \frac{\sin x}{x}$$

As x approaches zero, f(x) approaches 1. The squeeze theorem states:

If (1) $g(x) \le h(x)$ for all x in a neighborhood of c,

(2)
$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$$
, and (3) f is a

function for which $g(x) \le f(x) \le h(x)$ for all x in that neighborhood of c, then $\lim_{x \to c} f(x) = L$.

T18.

h	$\frac{5^h-1}{h}$
-0.0003	1.6090
-0.0002	1.6091
-0.0001	1.6093
0 . 16	undefined
0.0001	1.6095
0.0002	1.6097
0.0003	1.6098

 $\lim_{h \to 0} \frac{5^h - 1}{h} = \ln 5.$

Proof

$$\frac{d}{dx}(5^{x}) = \lim_{h \to 0} \frac{5^{x+h} - 5^{x}}{h}$$
 Definition of derivative.

$$= 5^{x} \lim_{h \to 0} \frac{5^{h} - 1}{h}$$
 Factor out 5^{x} .

$$= 5x \cdot (\ln 5)$$
 Evaluate.

T19.
$$v(t) = 251(1 - 0.88^t)$$

 $a(t) = 251[-\ln(0.88)] \ 0.88^t = -251(\ln 0.88)0.88t$
 $a(10) = -251(\ln 0.88)(0.88)(10) = 8.9360...$
Numerical derivative gives 8.9360... as well.

T20. If the velocity and the acceleration have opposite signs for a particular value of t, then the object is slowing down at that time.

T21. a.
$$v(t) = t^{1.5} + 3 \Rightarrow a(t) = 1.5t^{0.5}$$

b. $d(t) = \left(\frac{t^{2.5}}{2.5}\right) + 3t + C$
 $d(1) = 20$
 $\frac{1^{2.5}}{2.5} + 3(1) + C = 20$
 $3.4 + C = 20$
 $C = 16.6$
 $\therefore d(t) = 0.4t^{2.5} + 3t + 16.6$
c. $d(9) - d(1) = 120.8$

This represents the displacement between the first and ninth seconds.

T22. a.
$$c(t) = 300 + 2\cos\frac{2\pi}{365}t \Rightarrow$$

$$c'(t) = -\frac{4\pi}{365}\sin\frac{2\pi}{365}t$$
b. $c'(273) = -\frac{4\pi}{365}\sin\left(\frac{2\pi}{365} \cdot 273\right)$

$$= 0.03442... \text{ ppm/day}$$
c. Rate is $(6 \times 10^{15}) \cdot \frac{0.03442...}{1,000,000} \cdot \frac{1}{24 \cdot 60 \cdot 60} =$

$$2390.6627..., \text{ which is approximately } 2390 \text{ tons per second!}$$

T23. Answers will vary.