$\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$

Name: $\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$
$\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$

Name: $\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$
$\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$

Name: $\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$
$\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$

Name: $\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$
$\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$

Name: $\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$
$\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$

Name: $\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$
$\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$

Name: $\qquad$

## Mean Value Theorem for Derivatives <br> Practice Problem

Determine all the number(s) which satisfy the conclusion of Mean Value Theorem for $f(x)=-4 x^{2}+3-2$ on the interval $[-3,4]$

First, is this function continuous and differentiable on this interval? Why?

Next, find the value(s) for which the mean value theorem is true.
Remember: $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$

Name:

