Chapter 13

Polar Coordinates
Lesson 13-3 (pp. 797-803)

Mental Math

$$
\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]
$$

Guided Example 2

$2, \frac{11 \pi}{4} ; \frac{7 \pi}{4} ;-2,-\frac{\pi}{4} ;-2, \frac{7 \pi}{4}$

Activity

Step 1:
a. $\left[4.5,153^{\circ}\right]$
b. $\left[6.1,189^{\circ}\right]$
c. $\left[2.0,270^{\circ}\right]$
d. $\left[5.8,329^{\circ}\right]$

Step 2:

e. $(1.6,2.5)$
f. $(-4.0,0.0)$
g. $(1.5,2.6)$
h. (-0.7, -0.7)

Questions

1. a. - d.

2. a. $\left\lfloor 7, \frac{17 \pi}{6}\right\rceil$
b. $\left\lfloor-7, \frac{11 \pi}{6}\right\rceil$
3. $(0,5)$
4. $(4.24,-4.24)$
5. $(-3.46,-2)$
6. $\left[30, \frac{\pi}{3}\right]$
7. $\left[10,-53.1^{\circ}\right]$
8. C
9.

10.

11. true
12. false; $|r|=\sqrt{x^{2}+y^{2}}$
13. $\theta=\frac{11 \pi}{4}$; It is a line extending from the origin through Quadrants II and IV.
14. $r=12$; It is a circle with radius 12 .
15. $\left[-8, \frac{2 \pi}{3}\right]$
16. $\left[8, \frac{\pi}{3}\right]$
17. a. 30° west of south
b. 10° west of north
c. 20° south of west
d. 50° west of north
18. a and b.

c. The graph of all points satisfying this equation is a circle with radius 1 and center [$\left.1,90^{\circ}\right]$.
19. The equation is an identity. $\sin \left(\frac{\pi}{2}+x\right)=$
$\sin \left(\frac{\pi}{2}\right) \cos (x)+\cos \left(\frac{\pi}{2}\right) \sin (x)=1 \cdot \cos x+$ $0 \cdot \sin x=\cos x$; domain: all real numbers.
20. The equation is not an identity. Let $x=\frac{\pi}{3}$.

Then $\sec \left(\frac{\pi}{3}\right)+\cot \left(\frac{\pi}{3}\right) \csc \left(\frac{\pi}{3}\right)=\frac{8}{3}$ and
$\sec \left(\frac{\pi}{3}\right) \csc \left(\frac{\pi}{3}\right)=\frac{4 \sqrt{3}}{3} \neq \frac{8}{3}$.
21. a. 1
b. 36
22. a. $\sec ^{2} \theta$
b. $r^{2} \sec ^{2} \theta$
23. true
24. Answers vary. Sample: Name the vertices A, B, C, D, respectively. For the quadrilateral to be a parallelogram, $\overline{A B}$ must be parallel to $\overline{D C}$, and $\overline{B C}$ must be parallel to $\overline{A D}$, so we must show that these segments have equal slopes. $m_{\overline{A B}}=\frac{n-0}{m-0}=\frac{n}{m}$ and $m_{\overline{D C}}=\frac{q-(q-n)}{p-(p-m)}=\frac{n}{m}$ $; m_{\overline{\mathrm{BC}}}=\frac{q-n}{p-m}$ and $m_{\overline{\mathrm{AD}}}=\frac{(q-n)-0}{(p-m)-0}=\frac{q-n}{p-m}$. Since both pairs of opposite sides are parallel, the figure is a parallelogram
25. Answers vary. Sample: Polar coordinates are used in two different systems that deal with three-dimensional space. With cylindrical coordinates, a point (x, y, z), where x and y are the typical Cartesian axes and z is a vertical axis perpendicular to the plane, is described by $[r, \theta, z]$ in cylindrical coordinates. Here, as in polar coordinates, $x=r \cos \theta$ and $y=r \sin$ $\boldsymbol{\theta}$, and therefore the z-axis is still perpendicular to the plane. In spherical coordinates, there is a single origin point, which we can visualize as the center of a sphere. Once again the polar system is laid onto the Cartesian system, with the z-axis perpendicular to the plane. But now the polar system is described by $[r, \theta, \phi]$, where $\boldsymbol{\theta}$ is the angle between the x-axis and a ray extending to a point on the sphere, and ϕ is the angle between the z-axis and said ray.

