Chapter 13

The Geometry of Complex Numbers Lesson 13-5 (pp. 811-816)

Mental Math

a. $\left[\begin{array}{cc}-1 & 8 \\ 6 & -1\end{array}\right]$
b. $\left[\begin{array}{cc}3 & -4 \\ 0 & 9\end{array}\right]$

Activity

Steps 1 and 2:

Step 1: Answers vary. Sample:

$$
z=(a, b)=(1,3) ; w=(c, d)=(2,-1)
$$

Step 2: Answers vary. Sample: $z+w=3+2 i$
Step 3:Answers vary. Sample:

$z+w$ is a parallelogram.
Step 4:
a. $w=c-2 i$, where c is any real number.

b. $w=-4+d i$, where d is any real number.

c. $w=c+d i$, where $c=2 d$

Guided Example 2

a. $-1+0 i ;-2+3 i$
b. $y+1 ; 1$

Questions

1. real; imaginary
2. a. $(6,-4)$
3. a. $(-4,5)$
$2 b$ and $3 b$

4. $A=2.1+3 i, B=-3+4 i, C=-4-4 i, D=$ $-6 i$.
5. a. $U+V=-4+2 i$
b and c .

6. Graph the quadrilateral $A B C D$ on the realimaginary plane, where $A=(0,0), B=(a$, $b), C=(a+c, b+d)$, and $D=(c, d)$. The figure is a parallelogram if and only if the slope of $\overline{A B}=$ the slope of $\overline{D C}$, and the slope of $\overline{A D}=$ the slope of $\overline{B C}$. Slope of $\overline{A B}=\frac{b-0}{a-0}$ $=\frac{b}{a}$, and slope of $\overline{D C}=\frac{(b+d)-d}{(a+c)-c}=\frac{b}{a}$, so $\bar{A} \bar{B}$ and $\overline{D C}$ are parallel. Slope of $\overline{A D}=\frac{d-0}{c-0}=\frac{d}{c}$ and slope of $\overline{B C}=\frac{(b+d)-b}{(a+c)-a}=\frac{d}{c}$, so $\frac{c-0}{A D}$ and $\overline{B C}$ are parallel. Thus the quadrilateral is a parallelogram.
7. $[5,5.3559]$
8. $\left[1,-\frac{\pi}{3}\right]$
9. $|a+b i|=\sqrt{a^{2}+b^{2}}$
10. a. 13
b. 90°
11. a. $3 \sqrt{5}$
b. 153.4°
12. Answers vary. Sample:

$$
\begin{aligned}
& \frac{1}{2}+\frac{\sqrt{3}}{2} i,-i, \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i,-\frac{1}{2}+\frac{\sqrt{3}}{2} i, 1
\end{aligned}
$$

13. a. i. - iv.

b. Let $A=z-w=(2,9), B=z+w=(10,5), C$ $=w-z=(-2,-9)$, and $D=-(z+w)=$ $(-10,-5)$. Slope of $\overline{A B}=-\frac{1}{2}$ and slope of $\overline{D C}=-\frac{1}{2}$, so $\overline{A B}$ and $\overline{D C}$ are parallel. Slope of $\overline{A D}=\frac{7}{6}$ and slope of $\overline{B C}=\frac{7}{6}$, so $\overline{A D}$ and $\overline{B C}$ are parallel. Thus the quadrilateral $A B C D$ is a parallelogram.
14. a.

b. rhombus
c. 8
15. Yes; the distance from u to v
is $\sqrt{(a-c)^{2}+(b-d)^{2}}$ and $|u-v|$
$=|(a-c)+i(b-d)|$
$=\sqrt{(a-c)^{2}+(b-d)^{2}}$.
16. a. 16
b. $4 \sqrt{5}$
c. The triangle inequality states that the sum of any two sides of a triangle is longer than the third side; the sum of the two sides is equal to the third side only if the three points are on the same line. Therefore, if two sides are $|u|$ and $|v|$, the third side has measure $|u+v|$, then consequently $|u|+|v| \leq|u+v|$.

17.

18.

19.

20.

21. a. The relation is not a function.
b. yes
22. (a), (b), and (c)
23. divergent
24. convergent, 25
25. convergent, $\frac{64}{7}$
26. a. linear: 377.8 ppmv, 437.06 ppmv; exponential: 379.01 ppmv, 450.46 ppmv
b.

c. The fact that the annual increase in average atmospheric CO_{2} does not increase at a constant rate over time indicates that an exponential model might be better suited to this situation than a linear model.
27. a. $1,2 i,-2+2 i,-4$
b.

c. The graph forms a spiral about the origin as the coordinates continue to expand outwards.

