Chapter 7

The Factor Theorem
Lesson 7-4 (pp. 459-464)

Mental Math

a. $x(x-25)=0 ; x=0,25$
b. $(x+3)(x-2)=0 ; y=-3,2$

Activity

Step 1: $x=-2,5$

Step 2:

$$
\text { factor }\left(x^{2}-3 \cdot x-10\right) \quad(x-5) \cdot(x+2)
$$

Step 3:

$$
\begin{array}{|ll|}
\hline \hline \operatorname{zeros}\left(x^{2}-3 \cdot x-10, x\right) & \{-2,5\} \\
\hline
\end{array}
$$

Step 4: $x=-4,0,3$

Step 5: $x=-5,0, \frac{1}{2}, \frac{3}{2}$

12. a. $x=-3,2$
b. -204
c. $x=\frac{8}{3}, 7$
13. i. a.

$$
\operatorname{expand}((x-a) \cdot(x-b)) \quad x^{2}-a \cdot x-b \cdot x+a \cdot b
$$

b. The opposites of the zeros give coefficients for the linear terms, and the constant term is the product of the zeros.
ii. a.

$$
\begin{array}{|l|}
\hline \text { expand }((x-a) \cdot(x-b) \cdot(x-c)) \\
x^{3}-a \cdot x^{2}-b \cdot x^{2}-c \cdot x^{2}+a \cdot b \cdot x+a \cdot c \cdot x+b \cdot c \cdot x^{\prime}
\end{array}
$$

Expansion: $x^{3}-(a+b+c) x^{2}+(a b+a c+b c)$ $x-a b c$
b. The opposites of the zeros give the coefficients for the quadratic terms; the three possible products of two zeros give coefficients for the linear terms; and the opposite of the product of all the zeros gives the constant term.
iii. a.
expand $((x-a) \cdot(x-b) \cdot(x-c) \cdot(x-d))$
$x^{4}-a \cdot x^{3}-b \cdot x^{3}-c \cdot x^{3}-d \cdot x^{3}+a \cdot b \cdot x^{2}+a \cdot c \cdot \cdot^{2}$

Expansion: $x^{4}-(a+b+c+d) x^{3}+(a b+a c+$ $a d+b c+b d+c d) x^{2}-(a b c+a b d+$ $a c d+b c d) x+a b c d$
b. The opposites of the zeros give the coefficients for the cubic terms; the possible products of two zeros give coefficients for the quadratic terms; the possible products of the opposites of three zeros give coefficients for linear terms; and the product of all the zeros gives the constant term.
14. Answers vary. Sample:
$f(x)=-(x+4)(x-2)(x-4)=-x^{3}+2 x^{2}+$ $16 x-32$
15. Answers vary. Sample:
$g(x)=(x+8)(x)(x-5.1)(x-10)=x^{4}-$
$7.1 x^{3}-69.8 x^{2}+408 x$
16. $3 x+5$
17. $3 z^{2}-\frac{3}{2} z-3$
18. a. 1st differences: $-12,-8,2,18,40 ; 2 n d$ differences: 4, 10, 16, 22; 3rd differences:
6, 6, 6; The 3rd differences are constant, so v has degree 3.
b. $v(u)=u^{3}-4 u^{2}-7 u+10$
19. a. 1st differences: 4, 7, 10; 2nd differences: 3, 3; The 2nd differences are constant, so p has degree 2.
b. $p(n)=\frac{3}{2} n^{2}-\frac{1}{2} n$
c.

$$
p(5)=35
$$

20. a. m, p, r
b. n, q
c. $x<n, x>q$
d. $n<x<q$
e. $m<x<p, x>r$
f. $x<m, p<x<r$
21. $z=1$
22. a. factor, solve, zeros, intersect, and such that
b.

c. Answers vary. Sample: solve, factor, and zeros are easy to use to obtain quick facts about the polynomial, but the intersect command helps visually represent the Factor-SolutionIntercept Equivalence Theorem.

