Chapter 7

Polynomial Functions
Self-Test (pp. 494-495)
1.

2. By tracing the graph, a relative maximum point is about $(-0.64,5.31)$. The maximum point of the graph is about (2.81, 8.77). A relative minimum point is about $(0.83,2.42)$.
3. By tracing, using the intersect command on a graphing utility, or solving $g(x)=0$, the zeros are about -1.45 and 3.72.
4. Since the largest degree of any term is 4 , the polynomial is of degree 4.
5. On the graph, two real zeros can be seen where the graph crosses the axes. Therefore, there are $4-2=2$ nonreal zeros.
6.

$$
\begin{array}{r}
3 x^{3}-13 x^{2}+29 x-59 \\
x + 2 \longdiv { 3 x ^ { 4 } - 7 x ^ { 3 } + 3 x ^ { 2 } - x - 2 } \\
\frac{3 x^{4}+6 x^{3}}{-13 x^{3}}+3 x^{2} \\
\frac{-13 x^{3}-26 x^{2}}{29 x^{2}}-x \\
\frac{29 x^{2}+58 x}{-59 x}-2 \\
\frac{-59 x-118}{116}
\end{array}
$$

The quotient is $3 x^{3}-13 x^{2}+29 x-59$ and the remainder is 116.
7. $A ; f(1)=0$, so by the Factor Theorem, $(x-1)$ is a factor of f.
8. Answers vary. Sample: Because $2-i$ is a zero, its conjugate, $2+i$, must also be a zero. By the Factor Theorem, the polynomial must have factors $(x-5),(x-2+i)$ and $(x-2-i)$. Multiply these to get one possible polynomial, $x^{3}-9 x^{2}+25 x-25$.
9. a. $\frac{3-2 i}{3-2 i}$
b. $\frac{2-3 i}{3+2 i}=\frac{(2-3 i)(3-2 i)}{(3+2 i)(3-2 i)}=$
$\frac{6-13 i+6 i^{2}}{9-4 i^{2}}=0-i=-i$
10. a. $2(2+4 i)+(3+7 i)=7+15 i$
b. $(2+4 i)(3+7 i)=6+14 i+12 i+28 i^{2}=$ $-22+26 i$
11. a. The first differences are $4,7,10,13,16$. The second differences are $3,3,3,3$. Because the 2nd differences are constant, the polynomial is of degree 2 . Using quadratic regression,
$P_{n}=\frac{3}{2} n^{2}-\frac{1}{2} n$.
b. $P_{20}=\frac{3}{2} \cdot 20^{2}-\frac{1}{2} \cdot 20=590$
12. a. $\ell+2 w=500$, so $w=250-\frac{1}{2} \ell$.
b. $A=\ell w=\ell\left(250-\frac{1}{2} \ell\right)=250 \ell-\frac{1}{2} \ell^{2}$
c. Because the length and width must be positive, $\ell>0$ and $w=250-\frac{1}{2} \ell>0$. Then $\ell>0$ and $\ell<500$, so the domain is $0<\ell<500$.
13. $9 a b+18 b+5 a+10=(9 a b+18 b)+(5 a+$ 10) $=9 b(a+2)+5(a+2)=(9 b+5)(a+2)$
14. Sample: $64 m^{6}+27 k^{3}=\left(4 m^{2}\right)^{3}+(3 k)^{3}$
$=\left(4 m^{2}+3 k\right)\left(\left(4 m^{2}\right)^{2}-\left(4 m^{2}\right)(3 k)+(3 k)^{2}\right)$
$=\left(4 m^{2}+3 k\right)\left(16 m^{4}-12 m^{2} k+9 k^{2}\right)$
15. Answers vary. Sample: Let $u=x^{5}$. Then $x^{10}-$ $1=u^{2}-1=(u-1)(u+1)=\left(x^{5}-1\right)\left(x^{5}+\right.$ 1) $=(x-1)(x+1)\left(x^{4}+x^{3}+x^{2}+x+1\right)\left(x^{4}\right.$ $\left.-x^{3}+x^{2}-x+1\right)$.
16. By the Polynomial Difference Theorem, the polynomial has degree 5.
17. Count the number of x-intercepts of each graph: R has 3 real zeros; S has 1 real zero; T has 1 real zero.
18. (1, 0$) ; R(1)=S(1)=T(1)=0$, so by the Factor Theorem (1,0) is a point on each graph.
19. C; S has degree 3 , and because it has no nonreal zeros, by the Number of Zeros of a Polynomial Theorem, it must have 3 real zeros. Because 1 is the only x-intercept, and every real zero is an x-intercept, 1 must be a zero of multiplicity 3.
20. Because function T has degree 3 and has only 1 real zero, by the Number of Zeros of a Polynomial Theorem, it has 2 nonreal zeros.
21. There is a horizontal line that the graph of $p(x)$ appears to cross 5 times, so by the Polynomial Graph Wiggliness Theorem, $p(x)$ has degree at least 5.

